The adaptable choosability number grows with the choosability number
نویسندگان
چکیده
منابع مشابه
The adaptable choosability number grows with the choosability number
The adaptable choosability number of a multigraph G, denoted cha(G), is the smallest integer k such that every edge labeling of G and assignment of lists of size k to the vertices of G permits a list coloring of G in which no edge e = uv has both u and v colored with the label of e. We show that cha grows with ch, i.e. there is a function f tending to infinity such that cha(G) ≥ f(ch(G)).
متن کاملChoosability with limited number of colors
A graph is `-choosable if, for any choice of lists of ` colors for each vertex, there is a list coloring, which is a coloring where each vertex receives a color from its list. We study complexity issues of choosability of graphs when the number k of colors is limited. We get results which differ surprisingly from the usual case where k is implicit and which extend known results for the usual ca...
متن کاملChoosability, Edge Choosability, and Total Choosability of Outerplane Graphs
Let χl (G), χ ′ l (G), χ ′′ l (G), and 1(G) denote, respectively, the list chromatic number, the list chromatic index, the list total chromatic number, and the maximum degree of a non-trivial connected outerplane graph G. We prove the following results. (1) 2 ≤ χl (G) ≤ 3 and χl (G) = 2 if and only if G is bipartite with at most one cycle. (2) 1(G) ≤ χ ′ l (G) ≤ 1(G) + 1 and χ ′ l (G) = 1(G) + ...
متن کاملAdaptable choosability of planar graphs with sparse short cycles
Given a (possibly improper) edge-colouring F of a graph G, a vertex colouring of G is adapted to F if no colour appears at the same time on an edge and on its two endpoints. A graph G is called adaptably k-choosable (for some positive integer k) if for any list assignment L to the vertices of G, with |L(v)| ≥ k for all v, and any edge-colouring F of G, G admits a colouring c adapted to F where ...
متن کاملChoosability with union separation
List coloring generalizes graph coloring by requiring the color of a vertex to be selected from a list of colors specific to that vertex. One refinement of list coloring, called choosability with separation, requires that the intersection of adjacent lists is sufficiently small. We introduce a new refinement, called choosability with union separation, where we require that the union of adjacent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2011
ISSN: 0012-365X
DOI: 10.1016/j.disc.2011.06.016